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For a beam carrying n spring}mass systems, if the left side and right side of each attaching
point and each end of the beam are regarded as nodes, then considering the compatibility of
deformations and the equilibrium of forces between the two adjacent beam segments at each
attaching point and incorporating with the equation of motion for each spring}mass system,
simultaneous equations may be obtained for the �th attaching point, where the unknowns
for the simultaneous equations are composed of the integration constants for the
eigenfunctions of the �th and (�#1)th beam segments and the associated modal
displacements of the �th sprung mass. It is evident that if these unknowns are considered as
the nodal displacements, then the coe$cient matrix of the simultaneous equations will be
equivalent to the element sti!ness matrix for the �th attaching point (associated with the �th
and (�#1)th beam segments). In view of the last fact, one may use the numerical assembly
method (NAM) for the conventional "nite element method to obtain the overall
simultaneous equations for the overall (n) attaching points (associated with the overall
(n#1) beam segments) by taking into account the boundary conditions of the whole beam.
The solutions for the coe$cient determinant of the overall simultaneous equations to be
equal to zero will give the &&exact'' natural frequencies of the constrained beam (carrying
multiple (n) spring}mass systems) and the substitution of each corresponding values of the
integration constants into the associated eigenfunctions for each attaching point will
determine the corresponding mode shapes. Since no discretization on the continuous beam
was made in the present approach (NAM), the natural frequencies and the corresponding
mode shapes obtained are the exact ones.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

For a uniform beam carrying various concentrated elements (such as rigidly attached point
masses, elastically mounted lumped masses, linear springs and/or rotational springs), the
free vibration problem has been studied by a lot of researchers [1}12]. However, for
a non-uniform beam, even without any attachments, the researches on their dynamic
behaviors are relatively fewer [13}18]. As to the free vibration analysis of the non-uniform
beams carrying multiple concentrated elements [19], the information concerned is rare and
this is one of the reasons why the problem in this aspect is studied.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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In reference [10], it has been found that the eigenequation for a uniform Euler}Bernoulli
beam carrying multiple sprung masses takes the form [B]�C�"0. Since the order of the
overall coe$cient matrix [B] is 5n#4, where n is the total number of the sprung masses,
the order of [B] is 9 for the beam carrying one sprung mass and 14 for the beam carrying
two sprung masses. It is evident that the explicit expression for the eigen equation
[B]�C�"0 will become lengthy and intractable for the cases with n'2, hence the
literature relating to the free vibration analysis of a non-uniform beam carrying more than
two concentrated attachments is rare [19]. However, the numerical assembly method
(NAM) presented in that paper may easily tackle the cases with any number of concentrated
attachments. In reference [12], the NAM was used to perform the free vibration analysis of
a uniform Timoshenko beam carryingmultiple spring}mass systems and satisfactory results
were achieved. To the authors' knowledge, besides the conventional "nite element method
(FEM), no other e!ective techniques were presented to solve the title problem, particularly
the ones that may provide the exact solutions. For this reason, this paper tries to introduce
the NAM to solve the problem.

To realize the e!ectiveness of the NAM, the lowest "ve natural frequencies and some
of the corresponding mode shapes of a double-tapered beam carrying one, three
and "ve spring}mass systems were calculated respectively. In each case, six
boundary conditions were studied: free}clamped, clamped}free, simply supported}clamped,
clamped}simply supported, clamped}clamped, and simply supported}simply supported.
It has been found that the agreement between the NAM results and the FEM results is
excellent.

2. EIGENFUNCTIONS FOR THE CONSTRAINED NON-UNIFORM BEAM

Figure 1 shows a non-uniform cantilever beam carrying n spring}mass systems. The
whole beam with length ¸ is subdivided into (n#1) segments by the attaching point
� located at x"x� (�"1, 2, . . . , n), where (�) denotes the �th attaching point and ( )
denotes the �th beam segment. In addition, the left end and the right end of the beam are
denoted by �̧ and �R , respectively.

The equation of motion for a bare non-uniform beam is given by [18, 20]
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Figure 1. A non-uniform cantilever beam carrying n spring}mass systems.
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where y(x, t) is the transverse de#ection, E is Young's modulus, A(x) is the cross-sectional
area at the position x, I(x) is the moment of inertia of A(x), � is the mass density of the beam
material and t is time.

If A(x) and I(x) are given by

A(x)"A
��(�!1)

x

¸

# 1�
�
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x

¸
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(2)

and free vibration of the beam takes the form

y(x, t)">M (x)ei�N �, (3)

then the substitution of equations (2) and (3) into equation (1) yields
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In equation (2), A
�
, I

�
, b

�
and h

�
are the cross-sectional area, moment of inertia, width and

height of the cross-section at x" 0, b
�
and h

�
are the width and height of the cross-section

at x"¸, respectively, and �"b
�
/b

�
"h

�
/h

�
is the taper ratio of the beam. In equation (3),

�N is the natural frequency of the constrained non-uniform beam and >M (x) is the amplitude
of y(x, t).

Introducing the non-dimensional coe$cient
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will render equation (4) to
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where
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.

It is noted that 	"1 at x"0 and 	"� at x"¸, as one may see from equation (5).
The general solution of equation (6) is given by [20, 21]
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where C
�
(i"1}4) are the integration constants, J

�
and >

�
are the second order Bessel

function of "rst and second kinds, while I
�
and K

�
is the second order modi"ed Bessel

function of "rst and second kinds.
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Equation (7a) represents the eigenfunction for the transverse de#ection of the constrained
beam. Once the natural frequencies �N

�
( j"1, 2, . . . ) and the constants for each attaching

point, C
�
(i"1}4), are determined from the next sections, one may obtain the values of

>M
�
(	). The latter are the mode shapes of the constrained beam corresponding to the natural

frequency �N
�
.

For the �th beam segment, from equation (7a) one has

>M �(	�)"	��� [C��J�(��	�)#C��>�
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The di!erentiation of >M �(	�) with respect to 	� yields
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3. COEFFICIENT MATRIX [B�] FOR THE �TH ATTACHING POINT

Compatibility for the deformations at the attaching point requires that

>M �� (	�)">� �� (	�), >M 
�� (	�)">� 
�� (	�), >M 
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�� (	�). (12a}c)

For the force equilibrium at the attaching point, one has
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whereF
�
is the interactive force between the beam and the attached spring}mass system and

is given by [10, 23]

F
�
"
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The equation of motion for the �th sprung mass is given by

m�zK �#k� (z�!y�)"0, (15)

where m� and k� are the lumped mass and spring constant of the �th spring}mass system,
respectively, z( � and z� are the acceleration and displacement of the �th sprung mass and y� is
the transverse de#ection of the beam at the �th attaching point.
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Similar to equation (3), free vibration of the �th sprung mass takes the form

z�"Z�(	)ei�
N �, �"1, 2, . . . , n (16)

where Z�(	) is the amplitude (or modal displacement) of the sprung mass.
Insertion of equations (3) and (16) into equation (15) gives
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where m
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The substitution of equations (8)}(11) into equations (12), (13) and (17) leads to
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It is noted that, in equations (12) and (13), the &&left side'' of the �th attaching point located
at x"x� belongs to the segment (�) and the &&right side'' belongs to the segment (�#1), thus
the associated coe$cients are represented by C�� and C���	�

(i"1}4), respectively, as may
be seen from equations (22a)}(22e).

Equations (22a)}(22e) can be written in matrix form as
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4. COEFFICIENT MATRIX [B
�
] FOR THE LEFT END OF THE BEAM

For a cantilever beam with left end clamped, the boundary conditions are

>M (1)"0, >M 
(1)"0 (25a, b)

From Figure 1 one sees that the left end of the beam, �̧, coincides with the left end of the
"rst beam segment (�"1), hence from equations (8), (9), (25a) and (25b) one obtains
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The last two expressions can be written in matrix form as
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In equation (28) and the subsequent equations, the digits shown on the top side and right
side of the matrix represent the identi"cation numbers of degrees of freedom (d.o.f.) for the
associated constants CM

�
(i"1, 2, . . . ).

5. COEFFICIENT MATRIX [B
�
] FOR THE RIGHT END OF THE BEAM

For a cantilever beam with right end free, the boundary conditions are
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Since the right end of the beam, �R , coincides with the right end of the (n#1)th segment
(�"n#1), as one may see from Figure 1, hence from equations (10), (11), (31a) and (31b)
one obtains
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Equations (32a) and (32b) can be written in matrix form
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p"5n#4. (37)

In the last equations, p represents the total number of equations. From the above
derivations one sees that, from each attaching point for a spring}mass system, one may
obtain "ve equations (including three compatibility equations, one force-equilibrium
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equation and one governing equation for the sprung mass), and from each boundary (�̧ or
�R ) one may obtain two equations. Hence, for a beam carrying n spring}mass systems, the
total number of equations that one may obtain for the integration constants C�i and mode
displacementsZ� (�"1}n, i"1}4) is equal to 5n#4, i.e., p"5n#4 as shown by equation
(37). Of course, the total number of unknowns (C�� and Z�) is also equal to 5n#4. From
equation (8) one sees that the solution >M �(	)for each beam segment contains four unknown
integration constants C�� (i "1}4) and from equation (17) one sees that the governing
equation for each sprung mass contains one additional unknown Z�, hence if a beam is
carrying n sprung masses, then the total number of the beam segments is n#1 and thus the
total number of unknowns (C�i and Z�) is equal to 4(n#1)#n "5n#4"p.

6. OVERALL COEFFICIENT MATRIX [BM ] OF THE ENTIRE BEAM
AND THE FREQUENCY EQUATION

If all the unknowns C�� and Z� (�"1}n, i"1}4) are replaced by a column vector �CM �
with coe$cients CM

�
(k"1, 2, . . . , p) de"ned by equations (30), (24b) and (36), then the

matrices [B
�
], [B�] and [B

�
] are similar to the element property matrices (for the "nite

element method) with corresponding identi"cation numbers of degrees of freedom (d.o.f.)
shown on the top side and right side of the matrices de"ned by equations (28), (24c) and (34).
Basing on the assembly technique for the direct sti!ness matrix method, it is easy to arrive
at the following coe$cient equation for the entire vibrating system:

[BM ]�CM �"0. (38)

Non-trivial solution of the last equation requires that

�BM �"0 (39)

which is the frequency equation, and the half-interval technique [23] may be used to solve
the eigenvalues �N

�
( j"1, 2, . . . ). To substitute each value of �N

�
into equation (38), the values

of unknowns CM
�
(k"1, 2, . . . , p) can be determined. From equation (30), one sees that
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"C��, CM ��"C��, �"1}n, hence the substitution of
C�i (i"1}4) into equation (8) will de"ne the corresponding mode shape >M 
��(	). For
a cantilever beam carrying one (n"1) and two (n"2) spring}mass systems, the
corresponding overall coe$cient matrices [BM ]


��
and [BM ]


��
were shown in Appendix A

[see equations (A1) and (A2)]. From the lengthy expressions one sees that the existing
explicit formulations are not suitable for a beam carrying more than two (n'2)
spring}mass systems. However, this is not true for the numerical assembly method (NAM)
presented in this paper.

7. COEFFICIENT MATRICES [B
�
] AND [B

�
] FOR VARIOUS BOUNDARY CONDITIONS

From the previous sections, it is seen that the form of the coe$cient matrix [B�] for each
attaching point of the spring}mass system has nothing to do with the boundary conditions
of the beam. Hence for a &&constrained'' beam with various supporting conditions, the only
thing one should do is to modify the values of the two boundary matrices [B

�
] and [B

�
]

de"ned by equations (28) and (34), respectively, according to the actual boundary
conditions. Thus, the same numerical assembly procedures presented in the last section may
be followed. This is one of the predominant advantages of the NAM. The boundary
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matrices [B
�
] and [B

�
] for various boundary conditions are given in Appendix B at the end

of this paper.

8. NUMERICAL RESULTS AND DISCUSSION

The dimensions and physical properties of the non-uniform beam studied in this paper
are: beam length ¸"40 in, Young's modulus E"3)0�10� psi, cross-sectional area at the
shallow end of the beamA

�
"1)5 in�, area moment of inertia at the shallow end of the beam

I
�
"0)28125 in�, mass density of beam material �"0)283 lbm, taper ratio of the beam

�"2)0, total mass of the beam m
�
"�A

�
¸ [�

�
(�!1)�#(�!1)#1]"29)715 lbm and

reference sti!ness for the beam k
�
"EI

�
/¸�"312)5 lbf/in. For convenience, two

non-dimensional parameters for each spring}mass system were introduced:mH
�
"m

�
/m

�
and

k*
�
"k

�
/k

�
, i"1, 2, . . . , besides, the two-letter acronyms FC, CF, SC, CS, CC and SS were

used to denote the free}clamped, clamped}free, simply supported}clamped,
clamped}simply supported, clamped}clamped, and simply supported}simply supported
boundary conditions of the beam respectively.

8.1. A NON-UNIFORM BEAM CARRYING ONE SPRING}MASS SYSTEM

For convenience of comparison, the free vibration analysis on the bare (or unconstrained)
non-uniform beam which was obtained from the present approach is very close to those
obtained from FEM. The FEM model is shown in Figure 2, where the entire non-uniform
beam is replaced by a stepped beam composed of 40 uniform beam segments. The
cross-sectional area A

�
and the moment of inertia I

�
of the ith uniform beam segment are

determined from the average cross-sectional dimensions of the corresponding ith
non-uniform beam segment, respectively, and the mass per unit length of the ith uniform
beam segment is evaluated by �A

�
. The length of each uniform beam segment is

l"¸/40"1)0 in. Table 1 shows the lowest "ve natural frequencies with the six types of
boundary conditions (i.e., FC, CF, SC, CS, CC and SS) and Figure 3(a)}3(f) show the
corresponding mode shapes. From Figure 3 one sees that, for the SC, CS, CC, and SS
boundary conditions, the modal displacements near the left end of the beam are larger than
those near the right end of the beam. This is a reasonable result, because the sti!ness of the
left end is much smaller than that of the right end for the non-uniform beam shown in
Figure 1.
0h

y

(a)

(b)
y

L

0b x

x

Figure 2. The "nite element model for non-uniform beam: (a) top view and (b) front view.



TABLE 1

¹he lowest ,ve natural frequencies �
�
( j"1}5) for the bare non-uniform beam (without

carrying any spring-mass system)

Natural frequencies (rad/s)
Boundary
conditions Methods �

�
�

�
�

�
�

�
�

�

FC NAM� 25)77532 108)93610 270)72329 511)65966 832)52916
FEM� 25)76465 108)87999 270)57492 511)37488 832)06822

CF NAM 7)23408 73)47681 236)81331 477)59822 798)39106
FEM 7)23856 73)51321 236)92092 477)81289 798)75291

SC NAM 71)61388 212)87668 433)85401 734)70179 1115)57882
FEM 71)59223 212)80942 433)71599 734)47104 1115)24149

CS NAM 53)77585 196)23185 417)05549 717)82045 1098)63870
FEM 53)79692 196)30255 417)20453 718)07951 1099)04656

CC NAM 91)83540 251)75856 492)37771 813)02661 1213)79486
FEM 91)85148 251)80279 492)46522 813)17648 1214)03442

SS NAM 38)76810 162)22786 363)50517 644)48275 1005)41779
FEM 38)76239 162)20436 363)45241 644)39225 1005)28683

�NAM"numerical assembly method; FEM""nite element method.
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If ��"�
�
!�

���
( j"1}5) denotes the di!erence between any two adjacent natural

frequencies andN
�
denotes the node number of jth mode shape, then from Table 1 it is seen

that the minimum values of �� for the FC, CF, SC, CS, CC and SS beams are
approximately equal to 83, 66, 141, 142, 160 and 123 rad/s, respectively. Furthermore, from
Figure 3(a)}3(f), it is found thatN

�
"j!1, i.e., the &&node' numberN

�
is always less than the

&&mode'' number j by 1, for the bare non-uniform beam with the six boundary conditions.
However, this is not true for the constrained non-uniform beam as shown in Figure
4(a)}4(f): either the values of �N or those of ��N for the constrained non-uniform beam
decrease signi"cantly as may be seen from Table 2.

The percentage di!erences between �N
��
�

and �N
����

shown in the parentheses ( ) of
Table 2 were calculated using the formula: �

�
"(�N

��
�
!�N

����
)�100%/�N

��
�
, where

�N
��
�

and �N
����

denote the jth natural frequencies of the constrained non-uniform beam
obtained from the presented NAM and the conventional FEM, respectively. From
Table 2 one "nds that the maximum value of �

�
is �

�
"0)0006% (for the FC boundary

condition), hence the accuracy of the NAM is excellent.
From the mode shapes of the beam with six types of boundary conditions as shown

in Figure 4(a)}4(f), one sees that the "rst mode shapes >M
�
(	) are very close to the second

ones >M
�
(	), but this does not mean that the corresponding 1st natural frequencies (�N

�
)

are approximately equal to the 2nd ones (�N
�
) as shown in Table 2, besides, the

relationship between the node number N
�
and the mode number j is given as N

�
"j!2

( j*2).

8.2. A NON-UNIFORM BEAM CARRYING THREE SPRING-MASS SYSTEMS

If all the situations are exactly the same as the last example and the only di!erence is that
the one spring}mass system was replaced by the three spring}mass systems with locations
(x/¸), magnitudes of point masses (m*

�
"m

�
/m

�
) and spring constants (k*

�
"k

�
/k

�
) as shown
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Figure 3. The lowest "ve mode shapes >
�
(	) ( j"1}5) for the bare non-uniform beam (without carrying any

spring}mass system) with the support conditions: (a) FC, (b) CF, (c) SC, (d) CS, (e) CC and (f) SS.
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in Table 3, then the lowest "ve natural frequencies �N
�
( j"1}5) and the correspondingmode

shapes >M
�
(	) ( j"1}5) for the six boundary conditions are shown in Table 4 and Figure

5(a)}5(f), respectively.
A comparison between Tables 2 and 4 reveals that the natural frequencies of the tapered

beam carrying three spring}mass systems are much lower than the corresponding ones of
the tapered beam carrying one spring}mass system. For this reason, the corresponding
mode shapes for the tapered beam carrying three spring}mass systems [see Figure 5(a)}5(f )]
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Figure 4. The lowest "ve mode shapes >M
�
(	) ( j"1}5) for the non-uniform beam carrying one spring}mass

systemwith non-dimensional point massm*
�
"m

�
/m

�
"0)2 and non-dimensional spring constant k*

�
"k

�
/k

�
"3)0

located at x
�
/¸"0)5 with the support conditions: (a) FC, (b) CF, (c) SC, (d) CS, (e) CC and (f) SS.
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are very di!erent from those for the tapered beam carrying one spring}mass system [see
Figure 4(a)}4(f)].

From Table 4, one "nds that the maximum value of percentage di!erences between
�N

��
�
and �N

����
( j"1}5) is �

�
"0)0005% (for the FC and CF boundary conditions), i.e.,

the accuracy of the NAM is not a!ected by the total number of the attached spring}mass
systems.



TABLE 2

¹he lowest ,ve natural frequencies �N
�
( j"1}5) for the non-uniform beam carrying one

spring}mass system (located at x
�
/¸"0)5 with k*

�
"k

�
/k

�
"3)0 and m*

�
"m

�
/m

�
"0)2)

Natural frequencies (rad/s)
Boundary
conditions Methods ��

�
��

�
��

�
��

�
��

�

FC NAM 7)02596
(0)000004%)

25)89419
(0)0004%)

109)03110
(0)0005%)

270)72514
(0)0005%)

511)67660
(0)0006%)

FEM 7)02593 25)88356 108)97503 270)57671 511)39183

CF NAM 6)19333
(!0)0003%)

8)23570
(!0)0003%)

73)61888
(!0)0005%)

236)81448
(!0)0005%)

477)61686
(!0)0005%)

FEM 6)19545 8)23798 73)65525 236)92211 477)83184

SC NAM 7)04981
(0)000001%)

71)75787
(0)0003%)

212)89407
(0)0003%)

433)86578
(0)0003%)

734)71042
(0)0003%)

FEM 7)04980 71)73625 212)82678 433)72766 734)47976

CS NAM 7)03733
(!0)000002%)

53)98203
(!0)0004%)

196)23381
(!0)0004%)

417)08009
(!0)0004%)

717)82045
(!0)0004%)

FEM 7)03735 54)00303 196)30450 417)22917 718)07978

CC NAM 7)08395
(0)0000%)

91)97187
(!0)0002%)

251)76321
(!0)0002%)

492)39393
(!0)0002%)

813)03060
(!0)0002%)

FEM 7)05395 91)98794 251)80735 492)48155 813)18046

SS NAM 7)01473
(0)000003%)

39)04175
(0)0001%)

162)22841
(0)0001%)

363)53090
(0)0001%)

644)48598
(0)0001%)

FEM 7)01471 39)03607 162)20488 363)47824 644)39528

Note: The percentage di!erences between �N
��
�

and �N
����

shown in the parentheses ( ) were determined using
the formula: �

�
"(�N

��
�
!��

����
)�100%/�N

��
�
.

TABLE 3

¹he locations and magnitudes of the three spring}mass systems on the non-uniform beam

Locations
x
�
/¸

Magnitudes of spring constants
k*
�
"k

�
/k

�

Magnitudes of point masses
m*

�
"m

�
/m

�

x
�
/¸ x

�
/¸ x

�
/¸ k*

�
k*
�

k*
�

m*
�

m*
�

m*
�

0)1 0)5 0)9 3)0 4)5 6)0 0)2 0)5 1)0
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8.3. A NON-UNIFORM BEAM CARRYING FIVE SPRING}MASS SYSTEMS

The present example is also the same as the last one except that the three spring}mass
systems were replaced by "ve ones. The locations (x

�
/¸) and the magnitudes of the "ve

attachments (m*
�
"m

�
/m

�
and k*

�
"k

�
/k

�
, i "1}5) are shown in Table 5. The lowest "ve

natural frequencies �N
�
( j"1}5) and the corresponding mode shapes >M

�
(	) ( j"1}5) are

shown in Table 6 and Figure 6(a)}6(f), respectively, for the six boundary conditions (FC,
CF, SC, CS, CC and SS).

Table 6 shows that �N
�
:4)4, �N

�
:5)0, �N

�
:5)4, �N

�
:6)1 and �N

�
:6)8 rad/s for all the

six boundary conditions except that �N
�
:2)9 rad/s for the CF beam. In other words, for



TABLE 4

¹he lowest ,ve natural frequencies �N
�
(j"1}5) for the non-uniform beam carrying three

spring}mass systems with parameters as shown in ¹able 3

Natural frequencies (rad/s)
Boundary
conditions Methods ��

�
��

�
��

�
��

�
��

�

FC NAM 4)46793 5)42430 6)77941 27)02954 109)20376
(0)0000%) (0)000006%) (0)00002%) (0)0004%) (0)0005%)

FEM 4)46793 5)42427 6)77929 27)01896 109)14758

CF NAM 3)14514 5)34475 7)06218 10)48115 73)77557
(!0)0003%) (!0)00002%)(!0)000003%) (!0)0003%) (!0)0005%)

FEM 3)14604 5)34485 7)06220 10)48446 73)81192

SC NAM 4)46797 5)45499 7)05721 71)87890 212)95655
(0)0000%) (0)000002%) (0)0000%) (0)0003%) (0)0003%)

FEM 4)46797 5)45498 7)05721 71)85733 212)88931

CS NAM 4)46453 5)44082 7)06285 54)12206 196)26949
(0)0000%)(!0)000006%)(!0)000001%) (!0)0004%) (!0)0004%)

FEM 4)46453 5)44085 7)06286 54)14301 196)34007

CC NAM 4)46798 5)45977 7)06313 92)04866 251)78398
(0)0000%) (0)0000%)(!0)000001%) (!0)0002%) (!0)0002%)

FEM 4)46798 5)45977 7)06314 92)06470 251)82793

SS NAM 4)46300 5)41537 7)05322 39)25189 162)30375
(0)000002%) (0)000004%) (0)0000%) (0)0003%) (0)0001%)

FEM 4)46299 5)41535 7)05322 39)24623 162)28025

Note: The percentage di!erences between �N
��
�

and �N
����

shown in the parentheses ( ) were determined using
the formula: �

�
"(�N

��
�
!�N

����
)�100%/�N

��
�
.
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a tapered beam carrying "ve spring}mass systems with locations and magnitudes as shown
in Table 5, the lowest "ve natural frequencies ��

�
( j"1}5) are almost independent of the

boundary conditions of the beam. This may be the reason why the lowest "ve mode shapes
for the SS beam resemble like those for the CC, SC or CS beam. It is noted that all the
lowest "ve mode shapes do not have any node as shown in Figure 6(a)}6(f). From Table 6,
we can see that the maximum value of percentage di!erences between �N

��
�
and �N

����
( j"1}5) is �

�
"!0)0003% (CF beam), hence the accuracy of the NAM is also excellent

for the present case.

9. CONCLUSIONS

(1) For a double-tapered beam with various boundary conditions and carrying any
number of spring}mass systems, the exact solutions for the natural frequencies and
the corresponding mode shapes are easily obtained by using with the numerical
assembly method (NAM). It has been found that the locations and magnitudes of the
attached spring}mass systems signi"cantly a!ect the free vibration responses of the
beam.

(2) For an unconstrained non-uniform beam, if the sti!ness of the left part is much
smaller than that of the right part, then, for the SC, CS, CC, and SS boundary
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Figure 5. The lowest "ve mode shapes >M
�
(	) ( j"1}5) for the non-uniform beam carrying three spring}mass

systems with locations and magnitudes as shown in Table 3 with the support conditions: (a) FC, (b) CF, (c) SC,
(d) CS, (e) CC and (f) SS.
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conditions, the modal displacements near the left end are larger than the
corresponding ones near the right end of the beam.

(3) For the non-uniform beam with six boundary conditions studied in this paper,
the attachment of the spring}mass system(s) reduces the lowest "ve natural
frequencies of the beam signi"cantly. For this reason, the con"guration of the
corresponding mode shapes also varies predominantly compared with those of the
associated bare beam.



TABLE 5

¹he locations and magnitudes of the ,ve spring}mass systems on the non-uniform beam

Locations
x
�
/¸

Magnitudes of spring constants
k*
�
"k

�
/k

�

Magnitudes of point masses
m*

�
"m

�
/m

�

x
�
/¸ x

�
/¸ x

�
/¸ x

�
/¸ x

�
/¸ k*

�
k*
�

k*
�

k*
�

k*
�

m*
�

m*
�

m*
�

m*
�
m*

�

0.1 0.3 0.5 0.7 0.9 3.0 3.5 4.5 5.0 6.0 0.2 0.3 0.5 0.65 1.0

TABLE 6

¹he lowest ,ve natural frequencies �N
�
( j"1}5) for the non-uniform beam carrying ,ve

spring}mass systems with parameters as shown in ¹able 5

Natural frequencies (rad/s)
Boundary
conditions Methods ��

�
��

�
��

�
��

�
��

�

FC NAM 4)46792 5)04896 5)41877 6)08576 6)82670
(0)00000%) (0)000002%) (0)000007%) (0)00001%) (0)00001%)

FEM 4)46792 5)04895 5)41873 6)08569 6)82663

CF NAM 2)96451 4)87707 5)39880 6)19975 7)06252
(!0)0003%) (!0)00001%) (!0)00001%) (!0)00001%) (!0)00001%)

FEM 2)96548 4)87713 5)39884 6)19980 7)06253

SC NAM 4)46796 5)05364 5)45487 6)20894 7)05738
(0)0000%) (0)0000%) (0)000004%) (0)000002%) (0)0000%)

FEM 4)46796 5)05364 5)45485 6)20893 7)05738

CS NAM 4)46442 5)03691 5)44194 6)21220 7)06288
(0)0000%)(!0)000002%)(!0)000004%)(!0)000005%)(!0)000001%)

FEM 4)46442 5)03692 5)44196 6)21223 7)06289

CC NAM 4)46798 5)05449 5)45977 6)21903 7)06314
(0)0000%) (0)0000%) (0)0000%)(!0)000002%)(!0)000001%)

FEM 4)46798 5)05449 5)45978 6)21904 7)06315

SS NAM 4)46270 5)02262 5)41794 6)18725 7)05394
(0)0000%) (0)000004%) (0)000004%) (0)000002%) (0)000001%)

FEM 4)46270 5)02260 5)41792 6)18724 7)05393

Note: The percentage di!erences between �N
��
�

and �N
����

shown in the parentheses ( ) were determined using
the formula: �

�
"(�N

��
�
!��

����
)�100%/�N

��
�
.
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(4) In addition to the spring}mass systems studied in this paper, the presented
NAM is also available for a beam (either uniform or non-uniform) carrying
any number of the other concentrated attachments, such as rigidly attached
point masses, linear springs and/or rotational springs. One of the main advantages
of the NAM being superior to the FEM is that the NAM solutions are exact
and the FEM solutions are approximate. It is believed that the availability
of the NAM to the plate or shell problems should be de"nite and worthy of further
studies.
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Figure 6. The lowest "ve mode shapes >M
�
(	) ( j"1}5) for the non-uniform beam carrying "ve spring}mass

systems with locations and magnitudes as shown in Table 5 with the support conditions: (a) FC, (b) CF, (c) SC,
(d) CS, (e) CC and (f) SS.
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APPENDIX A

The overall coe$cient matrix for a non-uniform cantilever beam carrying one
spring}mass system, [B]


��
, and that carrying two spring}mass systems, [B]


��
, are given in

their explicit forms by equations (A1) and (A2) respectively.
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APPENDIX B

The coe$cient matrices for the left end of the beam, [B
�
], and those for the right end of

the beam, [B
�
], with the FC, SC, CS, CC and SS boundary conditions were given below.
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where

p"5n#4.

(2) Simply supported}clamped beam
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(3) Clamped}simply supported
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(4) Clamped}clamped
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(5) Simply supported}simply supported beam
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